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Abstract 

In this document, we describe a simple  autonomous star identi- 
fication  algorithm  which  is  effective  using a narrow  field of  view (2 
degrees),  making the use of a science  camera  for star identification 
feasible. This work extends that of Padgett and Kreutz-Delgado [8] 
by setting decision  thresholds  using  Bayesian  decision  theory. Our 
simulations show that when  positional  accuracy of imaged stars is 0.5 
pixel (standard deviation) and the apparent brightness  deviates by 0.8 
unit stellar magnitude, the algorithm  correctly  identifies 96.0% of the 
sensor  orientations, with less than a 0.3% rate of false  positives. 



1 Introduction 
A  reliable attitude  determination  system is critical to  the success of a space 
mission. A spacecraft that does  not know its  orientation  in  space is unable to  
send  collected data back to  Earth, receive instructions, or perform  maneuvers. 
An attitude  determination  system should have the  ability  to  estimate  the 
orientation of the  spacecraft  with high precision and  autonomously recover 
the  attitude knowledge if it is lost  or  found to be  unreliable.  Considering 
the  amount of time  and money invested  in a space  mission, this is a very 
important  problem. 

A  number of instruments such as  GPS,  and  magnetometers  are well suited 
for supplying attitude information while in orbit  around  Earth. A horizon 
sensor  may  also  provide useful information while in  the vicinity of any  large 
body. However, these  instruments  are  not very useful while the  spacecraft 
is  in transit between  bodies. There  are several other  instruments  that  can 
supply  attitude  information  to  spacecraft  control  systems  during  these ex- 
tensive  transit  times. Gyroscopes, sun sensors, and  star sensors are generally 
integrated  with  on-board  systems  to provide feedback regarding  spacecraft 
angular  displacement.  The  signal  from  these  instruments  can  be used to up- 
date  and monitor  changes  in the  orientation of the  spacecraft  with  respect 
to  some  inertial reference frame [14]. 

Each of the  transit sensors  has  unique  advantages and  disadvantages. 
Gyros  provide  continuous and nearly instantaneous  information,  but  that 
information is relative, and  therefore, gyros are of no use when the  current 
attitude knowledge is lost.  Sun  sensors  are  inexpensive,  lightweight, but 
require slewing of the  sensor, or possibly the  entire  spacecraft, in order  to 
find the  target,  the  sun. Also, a  sun sensor provides only 2-axis information, 
and  therefore  must  be used in  conjunction  with  some  other  instrument to  
completely  determine  spacecraft  orientation.  In  addition, for deep  space 
missions,  finding the  sun may not  be  practical. 

On  the  other  hand,  star sensors are  the  most  accurate of the sensors 
and allow for attitude  estimation  without  prior  information, or slewing the 
sensor. Unlike sun sensors, star sensors  can also provide  3-axis  information. 
Also, if slewing is possible, several attitude  estimates  taken from different 
parts of the sky  may  be  combined to improve the overall accuracy. For the 
great  majority of interplanetary missions, star fields are visible in  nearly 
all  orientations.  Therefore, a fixed sensor can  image an  arbitrary  section 



of sky  and  determine  the correspondence between the imaged stars  and a 
catalog of reference stars  stored on board. A star sensor can  also  be used to  
track known stars, providing  continuous  and  extremely  accurate  estimates 
of angular  displacement.  Unfortunately, star sensors are typically heavy, 
expensive, and consume  more power than  other  alternatives. 

Since  most missions already  carry a science camera for acquiring  highly 
accurate visual  images of target  bodies,  an  attractive  alternative  to a special- 
ized star sensor is to use the science camera  to  acquire a star field image  and 
use it for attitude  estimation  and  star  tracking.  This would avoid most of 
the drawbacks of the  star sensor while maintaining  the  accuracy  advantage. 
Fewer instruments decrease the weight and complexity of the  spacecraft,  thus 
reducing  the cost of the mission. This is an  important  advantage for proposed 
microspacecraft missions. 

It is, in fact,  quite possible that using the science camera  rather  than a 
star sensor will improve the accuracy of the  attitude  estimation. A science 
camera generally  has a very small field of view (FOV) (2 degrees or less) 
compared to a specialized star  tracker (15 degrees or more). A  narrower FOV 
means each pixel covers less area. Consequently, we expect  the final attitude 
estimate  returned from a science camera  image to be  more accurate  in  pitch 
and yaw than would be possible with a standard  star  tracker. Also, because 
the  same  instrument is used for imaging and for finding the  orientation,  the 
error  introduced by inaccurate  alignment between two separate  instruments 
is removed. 

Unfortunately,  the  small FOV of the science camera also  introduces  prob- 
lems. The density of bright  stars across the sky is generally insufficient to 
insure a minimum  number of stars in  all  potential sensor orientations for such 
a small  area. For this scheme to work, a longer exposure will be  required 
to increase the  total  number of visible stars.  The  on-board  star  catalog will 
need to be  expanded to accommodate  these  new,  dimmer  stars,  and  this will 
require  more  on-board memory. In  addition  to increasing the  amount of on- 
board memory, the  incorporation of more stars also increases the difficulty of 
identifying  any  particular star, since now there  are  many  more possibilities 
which must  be  distinguished.  Thus,  the  star  identification  problem  becomes 
more difficult. 

A number of algorithms for star identification  exist that can  determine 
the correspondence between the viewed star field and a set of catalog  stars in 
a known reference frame  [4, 12, 13, 3, 5, 11, 10, 6, 71. Despite  this extensive 



literature,  and  the  apparent  advantages of the use of a science camera for 
star identification, we are unaware of any  algorithm  that  has  demonstrated 
the capability of identifying stars from  images  produced by a sensor with a 
small  FOV. 

The grid algorithm for star identification was introduced  in  Padgett  and 
Kreutz-Delgado [8]. This  algorithm showed promise for accurate  star iden- 
tification  using a medium sized FOV (8 degree diameter).  Star identifica- 
tion  algorithms employing star pair or triangle  matching  have  great diffi- 
culty  dealing  with noise when identifying  medium  FOV  images [9], while the 
grid  algorithm performs quite well under  these  same  conditions (99% correct 
identification  with less than 1% false positives for expected levels of sensor 
noise). The on-board  memory  requirements  and  computation  times for this 
algorithm  are also  acceptably  small. The purpose of the new work is to en- 
hance the grid  algorithm to  obtain  satisfactory  results  on  small FOV  images 
(2 degree diameter). 

In  the  current  paper, we propose an extension to  the grid  algorithm  that 
incorporates a Bayesian classifier to choose the  star  pattern from the on- 
board  catalog  that best  matches  the  current sensor  image and decide if the 
match is good  enough to confidently identify it. Section 2 describes the al- 
gorithm  including  the extensions.  Section 3 presents very promising  results 
obtained by running  the  small FOV  algorithm  on a simulated  sky  contain- 
ing  approximately one million stars. Section 4 presents the discussion and 
conclusions. 

2 Grid Algorithm 
In  this section we describe the  grid  star identification algorithm, so called 
because of the way the relative  locations of stars  within a field of view are 
represented.  The  representation used is called a pattern. First, we will de- 
scribe how patterns  are  generated from a sensor image  and  the  simple  method 
used in [8] to  test for similarity between two patterns.  Next, we include a 
short discussion of  how  we go about  simulating image  noise, since an un- 
derstanding of this is necessary for following the rest of the  paper.  After 
that, we will describe the new similarity  measurement we have implemented 
based  on Bayesian decision theory. Next, we will describe the  information 
stored in the  on-board  star  catalog  and  an efficient method for comparing a 



sensor pattern  against  all  patterns  stored in the  on-board  catalog.  Finally, 
we will show how several star identifications  gathered  from a single  sensor 
image  are combined to provide a decision about  whether  or  not  the  position 
of the sensor  image in the sky  can  be  confidently  ascertained. 

2.1 Pattern Generation  and  Matching 
A pattern  is a representation of the relative  locations of the  stars  within a 
FOV. From a single sensor image, it is possible to generate  several  distinct 
patterns, one for each star in the image. The  steps for generating a pattern 
are  listed below. Also see Figure 1. 

0 Choose a star from the sensor image to be  the center star. 

0 Decide which star from the sensor image is the neighbor star. The 
neighbor star is the  nearest  star  to  the  center  star  outside a radius of 
br pixels. 

0 Center a g x g grid  on the  center  star,  and  orient  the  grid such that a 
horizontal  vector  from  the  grid  center to  the right edge passes through 
the neighbor star. 

0 Derive a g 2  element bit vector put [O . . . g 2  - 11 such that if grid ceZZ(i, j )  
contains a star,  then put [ j  x g + i]  = 1. All other  elements of pat equal 
0. 

In  this discussion, two parameters  control  the  pattern  generating process. 
The grid resolution parameter, g ,  specifies the  number of cells per  dimension 
of the grid that is laid over the sensor image. The bufler radius, br, determines 
how close a neighbor star can be to  the center  star. We set  these  parameters 
based  on our experience  with  earlier  simulations. For the  simulations  in  this 
paper, g = 80 cells, and br = 40 pixels on a 1024 x 1024 pixel image  plane. 

A pattern may  be  generated  not  only  from a sensor image,  but  from  the 
star  catalog as well. We can choose a star from the  catalog  to serve as the 
center star, project  the positions of surrounding  stars from the  catalog  onto 
a simulated sensor image, and  generate a pattern  as  outlined above. The 
resulting  pattern will be called a catalog pattern. A set of catalog  patterns 
is stored in the  on-board  catalog,  the  database of star  information  kept  in 
memory on the  spacecraft. 



c .' 
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Creating a Pattern 

Center  Grid  on  Center Star 
Orient  by  Nearest  Neighbor 

Figure 1: Creating a pattern from a sensor image. A grid is centered  on 
the so-called center star and oriented so that  the neighbor star is on  the 
horizontal.  Grid  locations which contain a star  are  turned  on. 



A central process in the grid  identification  algorithm is finding the  catalog 
pattern  that is most  similar to a specific sensor pattern.  What  does it mean 
for two patterns  to  be  similar? If pati and pat j  are two patterns  to  be 
compared, we can  count  the  number of non-zero cells the two patterns have 
in common with  the following formula: 

9 2 - 1  

m ( p a t i , p a t j )  = (pa$ [ k ]  x pati [ k ] )  
k=O 

The  catalog  pattern which is most  similar to pa$, then, is the pati from  the 
catalog which has  the  maximum value for m ( p a t i ,   p a t j ) .  

The m metric gives a measure of  how similar two patterns  are. If the two 
patterns  are  similar  enough, we may  be confident that  the sensor pattern 
center star is the  same as the  catalog  pattern  center  star.  In  this case, it is 
said that  the center star of the sensor pattern  has been identified. 

In  an earlier version of the  algorithm a constant  threshold (T )  was used 
to  determine if the  maximum value of m was good  enough to identify a 
star. A value of m greater  than or equal to T resulted  in  identification.  For 
values less than T ,  we would say the  star  had  an unknown  identity.  This 
worked quite well for medium FOV sensors [8] but proved inadequate for the 
small  FOV sensors and  resulting deep sky star catalogs we spoke of in  the 
introduction. For this  reason, we have developed the improved  measure of 
similarity discussed in Section 2.3. 

2.2 Image Noise 
We cannot  expect  the  star field images collected during a space flight to  
perfectly  reproduce  the view of the celestial  sphere  contained  in our on- 
board  catalog.  Objects  that  do  not  appear  in  our  catalog, such as planets 
and galaxies,  may appear in the FOV. Portions of the sky can  be  obscured by 
the  Earth or  some other  nearby  body. Sensor optical  properties  may  change 
the  apparent  position of objects which are in our  catalog.  Sensor noise may 
add  spurious  objects.  Errors exist in the  catalog  regarding  the  brightness  or 
position of listed  stars. Variable  or  binary stars may  change  in  magnitude 
and  therefore  not  match  the brightness values listed.  Parallax effects may 
slightly  change  the  positions of nearby stars relative to those  farther away. 

In  our  simulations, we model  all of these possible errors  using two types 
of Gaussian noise. During  the  production of a simulated  image, zero mean 



Gaussian noise may  be  added to  the brightness of each star  in  the sensor 
image. Since it is measured  in units of stellar  magnitude,  this  is  termed as 
magnitude  noise. In  our  simulations,  the  simulated  sensor  is  able to detect 
stars of 10.5 stellar  magnitude or brighter.  The  addition of magnitude noise 
allows stars  dimmer  than  magnitude  10.5  to  appear in the sensor  image and 
stars  brighter  than  magnitude 10.5 to  disappear. Zero mean  Gaussian noise 
is also  added  to  the  position of each star in the sensor image.  This  type of 
noise,  called location  noise and measured  in pixels, may cause stars  to change 
grid  locations  in  the  sensor  pattern  or  completely  disappear off the edge of 
the sensor. 

These two types of noise may result  in significant changes in  the  appear- 
ance of a star image. For example, at 1.2 standard  deviations of magnitude 
noise, and a 0.5  standard  deviation of position noise, on average, 12.8 extra 
stars  are  added  to  the  image,  and 21.2 stars will disappear from the image'. 
The average  number of stars seen in a sensor image at this high noise level 
in our  simulations was 51.8. 

2.3 Adaptive Threshold 
In  this  section, we discuss the  method used to  determine if the  number of 
stars which match between a sensor pattern  and a catalog  pattern (m) is large 
enough to consider the  center  star of the sensor pattern identified. In  earlier 
versions of this  algorithm, m was compared  against a constant  threshold (T )  
to decide  whether  or  not to claim to have identified the sensor pattern  center 
star. Using a constant  threshold, however, ignores information which might 
be  important in  discriminating between correct and  spurious  matches, such 
as  the  density of stars on the sensor and  the overlap between the  catalog 
pattern  and  the sensor pattern. 

The density of stars varies greatly across the celestial  sphere (Figure  2). 
The probability of getting T spurious  matches when there  are 200 stars in the 
FOV is much higher than when there  are 10 stars in the  FOV. An algorithm 
that works poorly at either  extreme faces a significant reduction  in coverage 
of the celestial  sphere. Using a  threshold which adapts  to  the number of 
stars in the  FOV provides a mechanism to increase the  reliability of the grid 

'More stars would have been  added  had the  extracted catalog  contained stars dimmer 
than magnitude 11.0. 



algorithm at the  extremes. We have implemented  this  adaptive  threshold as 
a Bayesian classifier. 

When we have chosen a star  to be identified from the sensor FOV, we 
create a sensor pattern specific to  that  star by placing the  star in the  center 
of the  pattern  grid  and  rotating  the  grid so that  the line  from the center star 
to  its nearest  neighbor is horizontal  (Figure 1). Since the  pattern  grid is no 
longer  centered on the sensor, it is likely that a number of stars  near  the 
sensor edge will not  appear in the sensor pattern. Likewise, there  are  areas 
on the  pattern grid which are  not covered by any  area of the sensor. No stars 
will appear in  these  areas of the  pattern.  The proportion of pattern overlap 
is the  proportion of pattern grid area which is covered by the sensor. The 
proportion of overlap for catalog  patterns is always 1.0. 

In  the following discussion, the  proportion of pattern overlap is designated 
by the variable, 0. The variable, s ,  we will use to designate  the  number of 
stars in the  current sensor pattern. Similarly, t will represent the  number of 
stars  in  the  current  catalog  pattern. As we mentioned before, the  number of 
matching grid cells found between the sensor pattern  and  the  current  catalog 
pattern will be given by m. 

If the  center  star of the  current  catalog  pattern  is  the  same  star as the 
center star of the sensor pattern,  and  the  nearest neighbor star in both  pat- 
terns is the  same, we will say that we have a correct identification. If the 
center star of the  catalog  pattern is wrong or the  nearest neighbor is wrong, 
we will call that identification incorrect. Let P(correct I m, s ,  t ,  0 )  be the 
probability of seeing a correct  identification given the  current  parameter  set- 
tings, m, s, t ,  and 0. Similarly, P(incorrect I m, s ,  t ,  0 )  is the  probability of 
seeing an  incorrect identification given the  current  parameters. 

If  we set  the  adaptive  threshold at the  point where 
P(correct I m, s ,  t ,  0 )  = P(incorrect I m, s ,  t ,  0) .  (1) 

we will minimize the average probability of misclassification [212. If P(correct I 
m, s ,  t ,  0 )  > P(incorrect I m, s ,  t ,  o), we will tag  the sensor pattern  center 

2This analysis  assumes that  the cost of a misclassification is the  same regardless of 
whether the error is a false positive  or  a false negative. In  this  setting,  this  assumption 
is very likely wrong,  since  identifying an orientation  incorrectly  may  result  in a failed 
mission, while reporting  an unknown  orientation  simply  requires  acquiring an image  and 
trying  again.  Setting the threshold to a  point  where, for example, P(correct I m, s ,  t ,  o) > 
P(incorrect I m, s ,  t ,  o)  may  improve the performance of the algorithm by reducing the 
number of false positives.  On the other  hand,  the verification phase of the algorithm 



star  with  the identification  number of the  matching  star  from  the  on-board 
star catalog.  Otherwise we will tag  the  center  star  as unknown.  By Bayes 
theorem, we can  rewrite (1) as 

P(m, s ,  t ,  o I correct)P(correct) = P(m, s ,  t ,  o I incorrect)P(incorrect) (2) 

From  the definition of conditional  probability, P ( x  I y) = M ,  we get p X,Y 

P ( x ,  y) = P ( x  I y )P(y) .  We can use this  identity  to  rewrite (2) as 

P ( m  I s ,  t ,  0 ,  correct)P(s, t I 0,  correct)P(o I correct)P(correct) = 
P(m I s ,  t ,  0,  incorrect)P(s, t I 0, incorrect)P(o I incorrect)P(incorrect). (3) 

The  proportion of overlap is independent of whether we have a correct 
identification  or  not, so P(o  I correct) = P(o I incorrect). Therefore, (3) can 
be  rewritten  as 

P ( m  I s ,  t ,  0 ,  correct)P(s, t I 0, correct)P(correct) = 
~ ( m  I s ,  t ,  0 ,  incorrect)P(s, t I 0, incorrect)P(incorrect). (4) 

Then we apply  the  identity  again  to  produce 

P ( m  I s ,  t ,  0 ,  correct)P(s I t ,  0,  correct)P(t)P(correct) = 
P(m I s ,  t ,  0 ,  incorrect)P(s, t I 0, incorrect)P(incorrect). (5) 

Let  us look at the  right side of this  equation  first. We have an  incorrect 
identification  here, so the sensor and  catalog  patterns  are generally not  from 
the  same  part of the sky. We will make the  assumption,  then,  that  the num- 
bers of stars in the sensor and  catalog  patterns  are  independent ’. This allows 
us to rewrite P ( s ,  t I 0, incorrect) as P ( s  I 0, incorrect)P(t I 0, incorrect). 
Let  us  also  assume that fact that we have an incorrect  identification  does not 

(described  in  Section 2.5) tends  to filter out  the  majority of false positives anyway, so 
this change in the threshold may end  up  hurting  performance by reducing the number of 
correct  identifications. We have not yet attempted  an analysis which includes the influence 
of the verification phase or the costs of the various types of errors, so we simply assume 
equal  cost. 

3Note that, when the catalog pattern is correct but  the nearest neighbor chosen is 
incorrect,  the identification is considered incorrect.  In this case, the two patterns  are from 
the same  part of the sky and so the number of stars is highly correlated.  The  assumption 
we are making  here ignores this  situation. 



influence the  number of stars  on  the  sensor4, so P ( s  I 0, incorrect) = P ( s  I 0).  

If  we assume that  the  stars  are uniformly distributed  on  the  sensor, we get 
P ( s  I 0, incorrect) = o P ( s ) ,  where P ( s )  is the  probability of getting s stars 
in a sensor pattern when the  proportion of overlap  is 1. This is essentially 
equivalent to  the  distribution of star densities  across  the sky. 

Similarly, we can rewrite P( t  I 0,  incorrect) as P(t  I o), since the  number 
of stars in the  catalog  pattern is independent of the  proportion of overlap, 
P(t I o,incorrect) = P( t ) .  Putting  this all together, we see that P ( s  I 
0, incorrect)P(t I 0,  incorrect) = oP(s)P(t) .  

For the sake of simplicity, when we have an incorrect  identification, we will 
assume that  any  match we get between the sensor pattern  and a catalog  pat- 
tern is purely random,  and  that each potential  match is independent of all 
others. For each star in the sensor pattern,  the  probability  that  it  matches 
a star in the  current  catalog  pattern by chance  is $, where g is the num- 
ber of cells per  dimension  in the  grid.  This gives us a binomial  distribution 
B ( s ,  5, m),  where B(x ,  y,  x )  equals the  probability of getting x successes out 
of x independent  trials when the  probability of success on  each trial is y. 
Thus, we can  rewrite (5) as 

Let  us  consider another  term on the  right side of (5), P ( m  I s ,  t ,  0,  incorrect). 

P (m I s ,  t ,  0 ,  correct)P(s I t ,  0 ,  correct)P(t)P(correct) = 
t 

9 
B ( s ,  >, m)oP(s)P(t)P(incorrect). (6) 

Simplifying, and using the  fact  that P(incorrect) = 1 - P(correct), gives us 

P ( m  I s ,  t ,  0 ,  correct)P(s I t ,  0,  correct)P(correct) = 
t 

9 
B ( s ,  T , m ) o P ( s ) ( l  - P(correct)). (7) 

Equation 7 gives us four  probability  distributions which must  be  esti- 
mated, P ( s ) ,  P(correct) ,  P ( s  I t ,  0 ,  correct), and P(m I s , t ,  0 ,  correct). We 

40f all  our  assumptions,  this one seems most  suspect.  Despite the dubious  quality of 
this  assumption,  the algorithm does perform well. A more complex analysis which does 
not make this  assumption is possible. We have not  done  any  empirical  studies to determine 
what influence, if any, such a change would have on performance. 

5Strictly  speaking, the fact that a  catalog  pattern is incorrect does influence the dis- 
tribution of the number of stars in the  pattern, because there is one pattern we are less 
likely to see when we have an incorrect  identification - the correct  catalog pattern. Given 
the large  number of catalog  patterns,  this influence is negligible. 



generated  an  estimation for each of these  distributions by running simula- 
tions. Recall that P ( s )  is essentially  equivalent to  the  distribution of star 
densities across the sky. We estimated  this  distribution by counting  the num- 
ber of stars  within a 2 degree  FOV for 10,000 random sky orientations  and 
plotting  the  count of times each number of stars  occurred. A smoothed ver- 
sion of this  plot, normalized so that  the  area  under  the curve is 1.0  (Figure 2),  
serves as a good estimate of P(s ) .  

We estimated P(correct) by running  our  algorithm  on 1000 randomly 
chosen sky orientations  and  counting  the  number of times  an  identification 
occurred. The  proportion of identifications estimated by this  method was 
0.22. 

When we have a correct  identification,  the sensor and  catalog  patterns  are 
taken from the  same  part of the sky, and we should  expect a high degree of 
correlation between the  counts of stars in the two patterns.  This  correlation 
must  be  captured by our  estimate of the  distribution P ( s  I t ,  0,  correct). 
When we have a correct  identification, a good  first estimate of s is given by 
s = to. For each integral value of LtoJ we calculated  the  mean value of s 
collected  from 500 randomly  generated  correct  identifications at magnitude 
noise of 1.0 and  location noise of 0.5. A plot of to versus the  mean of s can 
be  fitted by a line passing through  the origin  with  slope  0.64.6 Given this 
understanding of the  distribution, we decided to  estimate P ( s  I t ,  0, correct) 
by the probability of seeing the value s - 0.64to when choosing from  the 
normal  distribution  with mean 0. The variance of the  normal  distribution 
(134) was estimated by calculating  the variance of t o  across the previously 
mentioned 500 randomly  generated  orientations7. 

If s = to, we would see a slope of 1.  The bias towards smaller values of s is caused 
by the fact that our  simulated sky contains no stars of magnitude  greater  than 11. Our 
simulated sensor can  detect  stars  up  to  magnitude 10.5. Adding Gaussian noise to  the 
magnitude of the  stars will cause a number of stars brighter than 10.5 to  become dimmer 
than  the sensor can  detect,  and  thus  disappear. Also a number of stars dimmer than 10.5 
will become brighter,  and  thus  appear.  With Gaussian noise of 1.0 standard  deviations, 
as we are using in  these  simulations, we would expect a number of stars dimmer than 
magnitude 11 to  appear on the sensor. Since there  are no  such stars  in our  simulated 
sky, this does not  happen. Some of the  stars which vanish because of the noise are  not 
replaced, and  the number of stars on the sensor, s ,  decreases. 

7A plot of to  versus variance shows that  the variance is clearly not  constant. It is vastly 
smaller for small values of to. Changing  our  estimate of P ( s  I t ,  0, i d )  to  take  this  into 
account may improve performance of the algorithm  in  sparse star fields. 



0.02 

0.01 

0.00 
0 50 100 150 200 250 

Stars Seen in 2 Degree FOV 

Figure 2: Probability of seeing various  numbers of stars  in a 2 degree FOV 
sensor  image. 

There  remains one distribution  to  estimate, P(rn I s ,  t ,  0 ,  correct). This 
distribution  tells how likely we are  to get rn matches given the  number of 
stars  in  the sensor pattern,  the  current  catalog  pattern,  and  the  proportion 
of overlap  between the two patterns. Since we are  dealing  here  with a correct 
identification, if there were no noise, we would expect every star in the sensor 
pattern  to  match  the corresponding star in the  catalog  pattern  (i.e., rn = s ) .  

We used a binomial  distribution  to  estimate P(rn I s ,  t ,  0, incorrect), and 
we employ a similar  strategy here to  estimate P(rn I s ,  t ,  0,  correct). We 
assume  that  there  are r stars in the  area of the sky from which we are gen- 
erating a sensor image and  that for each of these  stars  there is a probability, 
p ,  that it will appear  on  the sensor.  Note that we do  not know either r or p ,  
so these values must  be  estimated. Since we have a correct  identification, s 
and to both serve as  estimates of r .  We use the average, y .  

The value for p is estimated by simulation. For each of 1000 randomly 
chosen catalog  stars, we center  the sensor on  the  star  and  create a sensor 



pattern  after  adding 1.0 standard  deviation of magnitude noise and  0.5 of 
location noise to all  the  stars. Under this  procedure, only 52% of the  stars 
end  up  in  the  same grid  location  as  they occupy in the  corresponding  catalog 
pattern, so our  estimate of p is 0.52. 

The noise we use in our  simulations  can affect the value of m in three 
ways. First,  magnitude noise may increase  or  decrease the  brightness of a star 
as it  appears on the sensor. This may  cause  some stars  to  appear  and  others 
to  disappear. Second,  location noise may  cause a sensor star  to change  grid 
locations so that a match  with  its  corresponding  catalog  star  may  be missed. 
Both of these effects are consistent  with  using the  binomial  distribution as an 
estimate of P ( m  I s ,  t ,  0,  correct). The  third effect is not.  Location noise on 
the center star or its  nearest neighbor  may  cause the  alignment of the sensor 
pattern  to  rotate compared to  the  catalog  pattern. Note that  the  farther 
a star is from the  center  star  the more likely it is to change  grid  locations, 
reducing  the  number of matches, m. The probabilities of two stars  appearing 
in  the correct  grid  location are  not  independent  under  this effect. If location 
noise causes a large  rotation,  all  stars in the  pattern  are affected. 

Clearly, this  third effect violates the  assumptions of using the  binomial 
distribution as an  estimate of P ( m  I s ,  t ,  0,  correct). To  more  accurately 
reproduce  the  actual  distribution, we could condition  this  probability  on 
the distances  from  the  center  star  to each other  star  in  the sensor  image. 
This would complicate  things  considerably, so we decided to use the  simpler 
binomial  model. The results  reported in  Section 3 support  our decision. 

We started  with  Equation 1, which contained two distributions whose 
shapes were unknown. Putting  everything  together, we end up  with  Equa- 
tion 8, which contains  only  distributions which are completely  defined. 

s + t o  t 
9 

B(- ,0.52, m)N(O, 134, s = 0.64t0)0.22 = B(s ,  -,m)oP(s)0.78 (8) 

where N ( z ,  y,  x )  is the height at z of the  normal  distribution  with  mean x 
and variance y. 

Equation 8 defines a threshold which changes  depending  on  the values of 
s ,  t ,  and 0. If the  right side of Equation 8 is greater  than  the  left,  then we will 
label  the  center  star of the sensor pattern  with  the  label of the  center  star of 
the  catalog  pattern. If the left side is greater, we will label the center star 
as “unknown.” If  we subtract  the left side  from the  right, as in Equation 9, 
we get an  adaptive  measure of  how  well the two patterns  match.  The  larger 



the  number,  the  better  the  match. 

s + to t 
9 

B(- ,0.52,m)N(O, 134, s - 0.64t0)0.22 - B(s ,  -,m)oP(s)O.78 (9) 

2.4 On-Board  Star  Catalog 
If the  algorithm is to be effective for all  positions  in  the sky, we need to in- 
sure  that  the  on-board  catalog  contains  patterns for some  minimal  number of 
center  stars in each potential sensor image. Furthermore,  in  order  to  increase 
the likelihood that  the algorithm will be  able to identify  all potential orien- 
tations  with  the  same facility, it is necessary for each potential  orientation 
to have approximately  the  same  number of center  stars in the  catalog. 

To achieve these  goals, we use a relatively  simple  procedure for deter- 
mining which center  stars  to include in the  on-board  catalog.  Typically  the 
brightest  stars  are more  reliably  imaged and  extracted  than  are  the  dimmer 
stars, so using the  bright  stars should  result  in  increased  accuracy. We choose 
a set of orientations covering the celestial  sphere by walking the  sphere  in 
0.25 degree  incremental  steps. From each orientation  generated,  the  bright- 
est  stars  within a radius of pr degrees are  added to  the  catalog  until a total 
of Q stars  within  that  radius  are  included, or  until we run  out of stars. 

The  parameter pr ,  or pattern  radius is chosen to approximately cover the 
radius of the sensor  image. In  the  experiments presented  here, we will be 
simulating a square sensor image of 2 degrees per  side. A circle of 1.4 degree 
radius  approximately  circumscribes  such  an  image,  and so we set pr to 1.4. 
The  parameter, Q approximates how many recognizable center  stars we would 
like to see in a sensor image.  Here, we continue the  tradition  established  in 
earlier  research of setting Q to 10. Using these  parameter values, this  method 
gives us a fairly  uniform scattering of approximately  100,000  bright  center 
stars across the celestial  sphere. 

For each center  star chosen by this  method, we create  an  entry  in  the 
on-board  catalog.  The  index of this  entry serves as  the identification number 
of the center  star. Each entry  contains  the  position  (right ascension and 
declination) of the center star on the celestial  sphere, and  the  number of 
ones  in the  pattern  generated from the  center  star.  This  last value  is used as 
the t value for the  calculations which were presented  in  Section 2.3. 

The  pattern for a center  star is not  stored in the  bit vector  form  described 
in  Section 2.1. Rather  than  storing each pattern  separately,  an  aggregate 



structure, called a lookup  table, is used, which allows a fast search for the 
best  match across  all patterns of the  on-board  catalog. For each of the g2 
pattern  grid  locations, we store a list of the identification  numbers for the 
center  stars whose patterns have a star at that location. 

To find the  center  star whose pattern  best  matches a sensor pattern, pat j ,  
we simply  examine  the lookup table at each bit  location  in patj where a one 
occurs,  and  increment a counter for each center star listed there.  At  the  end 
of this  procedure, each counter will contain  the  number of matching  stars, 
rn ,  found for the corresponding  catalog  pattern.  The  catalog  pattern  counter 
with  the highest value tells  us the  on-board  pattern which best  matches patj 
(Figure 3). 

2.5 Processing a Star Field Image 
Once  the  on-board  catalog  has been constructed,  the  actual  identification 
process is quite simple. The  input  to  the grid algorithm is a sensor image.  A 
star in the sensor  image has  information  regarding  its  position on the sensor 
and its apparent  brightness. Ideally, the  brightest cy = 10 stars  in  the sensor 
image would correspond to 10 stars which had been included in  the  on-board 
catalog for this  orientation. Due to noise, however, some of the  on-board 
catalog  stars may  not  be  among the  brightest in the image. For this  reason, 
we test  up  to 3a of the sensor stars. If  we were to  test  all of the sensor 
stars, we would increase the risk of generating  spurious  matches  (maximum 
matches of sensor stars  with  the wrong  on-board  catalog star). 

For the grid algorithm  to work, it is essential that  the  same  nearest neigh- 
bor  star is found in the image as was used in  generating the on-board  pattern. 
To  increase the  probability of finding the correct  nearest  neighbor, if  we fail to  
find a good  enough match using the  nearest neighbor, we restart  the  match- 
ing  process a second time using the second nearest  neighbor. This  procedure 
is used for both  the  static  and  adaptive  threshold  algorithms. 

Ideally,  with the new adaptive  threshold  algorithm, we would evaluate 
each catalog  pattern using Equation 9 (from  Section 2.3). The  catalog  pat- 
tern which produced  the  largest value would be  the  best  match. Since this 
would be a time consuming  process,  instead we find the ,B catalog  patterns 
with  the  largest  numbers of matches, m, and  evaluate only these ,L3 patterns 
using  Equation 9. If the  maximum value of Equation 9 is greater  than zero, 
we label  the sensor pattern center star with  the identifier of this  best  match- 



Sensor Pattern Lookup Table 

("on" bit location) (pattern stars) 

< 1, 66, 77,  ... > 

/" < 1, 9, 149, ... > 

c 1, 2,409, ... > 

Star Counters 
(star-count) 

1-3 
2- 1 
9-  1 
66- 1 
77- 1 
149- 1 
409- 1 

Figure 3: The leftmost  column of this figure shows part of the sensor pattern 
representation  extracted from an  image,  indicating that  stars were detected 
in  grid cell locations  14, 29, 49, etc.  In  the  center  column, we see how similar 
information was recorded for catalog  patterns in the  on-board  lookup  table. 
Lookup  table  entries for grid  locations  14, 29, and 49 all  contain a 1, indi- 
cating  that  catalog  pattern  number 1 contains  stars in these  grid  locations. 
Note  that  other  patterns also contain  stars in these  locations. For instance, 
catalog  patterns 66 and 77 contain a star in  grid  location  14. The  rightmost 
column shows the  set of star counters which have so far  been  incremented by 
this sensor pattern. Note that  the  star counter for catalog  pattern 1 has been 
incremented 3 times, once for each time  pattern 1 showed up  in  one of the 
lookup  entries  corresponding to a sensor pattern "on" location.  Other  star 
counters  (2,  9, 66, etc.) have also been  incremented,  but  the  largest  number 
of matches  found so far (3) are for pattern  number 1. 

ing  catalog  pattern. 
We choose a value of p which is likely to include the  best  matching  catalog 

pattern, according to  Equation  9,  but which will not require too much com- 
putation.  Note  that changing this value will affect the value of P(correct) 
discussed  in  Section 2.3. In  the  simulations  reported here, ,D was set  to 7. 

Regardless of whether we use the  static  or  adaptive  threshold  algorithm, 
at this  point we have labeled up  to 3a = 30 sensor stars  with  on-board 
catalog indices. We can now assign positions to each of these  stars  from 
the  on-board  catalog.  It is quite likely that some stars will be  mislabeled. 
Therefore, we perform a final verification operation  to  test  the consistency 



of the  labels. Any labeled star which is not  near  any  other labeled star is 
obviously from the wrong part of the sky. The largest  group of stars  within 
the  same  FOV is located. If the  number of stars in this  group is greater 
than or  equal to two, then  the  orientation of the boresight of the  image  is 
calculated  from  the  positions of the labeled stars.  Otherwise,  the  orientation 
of the  image is reported  as unknown. 

3 Simulation  Results 
To determine how  well the grid  algorithm  performs, a number of simulations 
were conducted to measure  the identification rate  under a variety of different 
noise conditions.  In  this  section, we present the  results of these  simulations 
for both  the  static  threshold  and  adaptive  threshold  algorithms. 

For these  experiments, we simulated  the celestial  sphere by creating a 
star  catalog which includes  all stars  brighter  than  magnitude 11.0 extracted 
from the Guide  Star  Catalog Version 1.1. The  extracted  catalog  contains 
934,487 stars. 

All star images were created  using a simulated  sensor  with a 2  degree x 
2 degree  square field of view, projecting  onto a square  CCD  array of 1024 
x 1024 pixels. The simulated sensor was capable of detecting  stars  brighter 
than  magnitude 10.5. 

The on-board  catalog was created  from  the  extracted  catalog as described 
in  Section 2.4. No noise was added to  the  catalog  during  this process. 

3.1 Static  Threshold  Algorithm 
To see the effect of changes  in the  static  threshold T on the  performance of 
the  static  threshold  algorithm, we ran a series of simulations.  The  results 
are  reported in  Figure  4.  Each data point  reports  the  proportion of correct, 
incorrect, or  unknown  orientation  identifications seen across 500 randomly 
generated  orientations for one setting of 2'. A  correct orientation  occurs 
when the  algorithm  returns  the  estimated  position of an image  and  it  is 
correct. An incorrect orientation is when the  algorithm  returns  the  position 
and  it is incorrect.  The  remainder of the cases are  reported  as unknown 
orientations.  These occur when the  algorithm  reports  that  the  position  is 
unknown.  Location  error  in  these  simulations is kept at a constant value 
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Figure 4: 

of 0.5 pixels standard  deviation.  Magnitude  error  is  set at 0.8 units  stellar 
magnitude  standard  deviation. 

As the  threshold, T ,  is raised, we expect  more  unlabeled  stars  to  be 
sent  into  the verification phase. This  should  result  in more  unidentified 
orientations  and fewer correct and incorrect  orientations.  This is the  trend 
displayed  in the  graph.  It may seem surprising that a change in  the  threshold 
has so little effect on  the  number of incorrect  orientations. The flat slope of 
this curve demonstrates  that  the verification phase is quite effective at finding 
and ignoring  incorrectly identified stars. 

The highest  percentage of correct  orientations (90.9%) is seen when T is 
set to  4. At this  threshold value, the  percentage of unknown and  incorrect 
orientations is 3.4% and 5.7%, respectively. This  best  threshold value  is 
quite low compared to  the values used in previous,  larger FOV simulations. 
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This lowering of the  threshold is due  to  the increased effectiveness of the 
verification  phase as  the FOV  gets  smaller,  as  predicted  in [8]. As the FOV 
gets  smaller,  the  probability is reduced that two random  orientations will, by 
chance,  fall  into  the  same  FOV.  This allows the verification phase to ignore 
more  spuriously  labeled  stars. 

The  proportion of incorrect  orientations is a very important  measure of 
how  well the  algorithm is performing. If a spacecraft is using the  algorithm 
to restore  its  (lost)  orientation knowledge from a single star field image, 
then  an incorrect  identification  can  be  disastrous. If the  spacecraft  performs 
maneuvers  using  the incorrect  orientation knowledge, it is likely to  become 
even more  lost.  On  the  other  hand, if the  algorithm  reports  an unknown 
orientation,  the  spacecraft  can reorient and  try  again  with  another  star field 
image. 

The results  reported here are  quite good  considering the level of noise and 
the  small field of view we are dealing  with. Nevertheless, as we will see in 
the next  section, even better  results  are possible with  the  adaptive  threshold 
algorithm. 

3.2 Adaptive Threshold  Algorithm 
In  this  section, we present the  results of a set of simulations which demon- 
strate  the accuracy of the grid  algorithm  using  the  adaptive  threshold  tech- 
nique  explained  in  Section 2.3. 

Figure 5 contrasts  the accuracy of the  adaptive  threshold  algorithm (solid 
line)  under  varying levels of magnitude noise with  the  accuracy of the  static 
threshold  algorithm  (dotted line)  with T = 4 under  the  same  conditions. 
The x  axis  tells the level of magnitude noise, which ranges  from 0.0 to 1.2 
standard  deviations. A constant 0.5 pixel of position noise was injected 
across  all  simulations.  Each data point  reports  the  proportion of correct 
or  incorrect  orientation  identifications seen across 500 randomly  generated 
orientations for the  static  algorithm,  and at least 1000 randomly  generated 
orientations for the  adaptive  algorithm. To simplify the  graphs,  the  third 
measure, unknown orientations, is not  reported  here. The  sum of all  three 
possibilities  equals 1.0, so the  proportion of unknown orientations could be 
extracted from the  reported values. 

Notice that at all levels of noise, the  adaptive  threshold  algorithm pro- 
duces a higher proportion of correct  identifications, while maintaining a much 
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lower number of incorrect  identifications. For example, at the 0.8 level of 
magnitude noise, 96.0% of orientations  are  correctly  identified  with  an in- 
correct  rate of less than 0.3%. The  static  algorithm  produced 90.9% correct 
and 5.7% incorrect at this noise level. 

The effect of location noise on the  adaptive  algorithm is demonstrated  in 
Figure 6. The x  axis  tells  the level of location  noise, which varies  from 0.0 to 
1.5 standard  deviations measured  in pixels. A constant level of magnitude 
noise (0.4 standard  deviation) was injected  across  all data points.  Each data 
point is collected across 500 randomly  generated  orientations. The  small 
slope  on  all the curves  suggests that reasonable levels of location noise have a 
smaller effect on performance than does magnitude noise. This is consistent 
with  our previous  observations  with the  static  algorithm.  At 1.0 pixel of 
location noise, a rather high level, the  proportion of correct  identifications 



is 97.0%, while incorrect  identifications are  still  quite low at 0.4%, leaving 
2.6% unidentified. 

To our knowledge, there exist no published  results on the  performance of 
any  star identification  algorithm  using  such a narrow  FOV. Padgett,  Kreutz- 
Delgado,  and Undomkesmalee (1997) compare  the  performance of three com- 
peting  algorithms  on a much larger field of view - a triangle  algorithm, a 
match  group  algorithm,  and  the  grid  algorithm  with  static  thresholding8. 
Comparing  the  results of the grid algorithm  with  adaptive  thresholding,  as 
reported above  with  those of Padgett  et  al.  indicates  that  this new algo- 
rithm  is much more  robust  in  the face of noise than  either  the  triangle  or 
match  group  algorithms even though  the  test of the  competing  algorithms 
was based on an 8 degree FOV  sensor, while the grid algorithm  with  adaptive 
thresholding was tested at 2 degrees. 

3.3 Memory  and  Computational  Requirements of the 
Algorithm 

This  section  presents  the memory and  computational  requirements of the 
grid  algorithm  with  adaptive  thresholding. 

The only static  data  structures  maintained by the  algorithm  are  the on- 
board  catalog,  and  the look-up table, discussed in  Section  2.4. These two 
structures  account for the  large  majority of the memory  required to  run  the 
algorithm.  The  amount of memory  consumed by these  structures  is  quite 
easy to calculate.  Each  on-board  catalog  entry  contains  the  right  ascension 
and  declination of the  center  star,  and  the  number of stars in the  pattern 
generated  from  the  center  star. Assuming each of these values requires  four 
bytes of storage,  the  amount of memory  required for the  on-board  catalog 
is 12n, where n is the  number of entries  in  the  on-board  catalog.  Each 
lookup  table  entry consists of a list of on-board  catalog  indices for the  center 
stars which contain a 1 in a particular grid  location.  Each of these  lists  can 
compactly  be  stored in an  array. If the average number of stars  per  pattern 
associated  with  an  on-board  catalog  entry is given by a,  then  the  total  number 

~~~ ~~~ ~ 

*The comparison  concentrates  on the identification phase of the various algorithms, so 
all  algorithms use simple verification phases similar to  that used in the simulations  reported 
here. We expect use of a  more complicated verification phase to  boost the performance of 
all three algorithms. 
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Figure 6: 

of indices stored in the  lookup  table is nu. Assuming each index  can  be  stored 
in 4 bytes,  the  total memory  requirement of the lookup table is 4na,  and  the 
memory  required for both  static  structures is n(12 + 4a).  In  our  simulations, 
n = 101,490  and a = 56.0,  making  the  total memory  requirements for the 
static  data  structures in this  instantiation of the  algorithm  approximately 24 
megabytes. 

The number of seconds of CPU  time  per  orientation  calculated across 5000 
orientations  has been recorded at approximately 8.5 seconds per  orientation 
on a Sun  SPARCstation  10.  This figure does  include a certain  amount of 
overhead,  mainly  gathering of statistics, which would not  be  present  in a 
flight-ready implementation. 



4 Conclusions 
Despite  the good  results we have demonstrated  here, we expect that perfor- 
mance  improvements  are  still possible by future  enhancements of the algo- 
rithm. Some  improvement  in  performance is likely necessary in  order to  push 
the FOV down to  the  diameter of many science cameras (1 degree  or  less). 

Using a sensor  capable of detecting even dimmer  stars  should improve 
performance  somewhat.  This is likely to be quite  important at smaller fields 
of view. At the  sensitivity level at which the  current  simulations were run 
(10.5 magnitude),  there  are  still  quite a few orientations  with very few stars, 
as few as one. We expect that if it is possible to  accurately  image even 
dimmer  stars,  this will increase the  number of correct  identifications  in  these 
sparse  areas. 

As mentioned  in  Section 2.3, noise which causes the  location of the center 
star or its  nearest neighbor to change  slightly  in the sensor image  may  intro- 
duce a twist  in  the  alignment of the  grid, effectively changing  the  location 
of all  the  stars in the  image relative to  the  catalog  pattern.  The  square  grid 
used in  these  experiments is clearly  not optimal for dealing  with  this prob- 
lem  since a small  twist is likely to change the  grid  location of all  stars which 
are  far away from the  center. A target-shaped grid  composed of concentric 
circles divided into  sectors by lines radiating from the  center  should improve 
the ability of the  algorithm  to  deal  with  this kind of noise. If such a grid is 
centered on the  center  star, a twist  about  the  center will have a similar effect 
on  all  stars regardless of their  location  on  the  grid. 

A number of competing  star identification algorithms include  sophisti- 
cated verification  phases to remove spurious  star identifications [4, 131. In- 
corporation of such a technique into  our  algorithm may result  in  performance 
levels unachievable  with the simple verification technique used here. 

As mentioned  in  Footnote 2, a deeper  analysis, which incorporates  the 
influence of the verification phase, or which takes  into  account the cost of 
the various types of errors, may result in a better  setting of the  adaptive 
threshold,  resulting in improved performance. 

In  addition  to  improving  the performance of the  algorithm, we would like 
to  try  out  the algorithm on real star images. The noise models used in  this 
paper  are  fairly  typical of this kind of research.  Despite this,  they,  no  doubt, 
fall short of capturing  all  the  important  characteristics of actual  image noise. 
Unfortunately, star field images at very small fields of view are  not  readily 



available. Access to  an  observatory may be  required to make  progress  in this 
direction. 

The simulations  presented  in  this  paper provide convincing  evidence that 
the  adaptive  threshold grid  algorithm is capable of acceptable  performance 
for typical star identification  applications, even using a small FOV science 
sensor with fairly high levels of sensor noise. To our knowledge, this work 
represents  the first successful attempt  to tackle  this difficult problem. 
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